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ABSTRACT

Combined action of helical motions of plasma (the α effect) and non-uniform (differ-
ential) rotation is a key dynamo mechanism of solar and galactic large-scale magnetic
fields. Dynamics of magnetic helicity of small-scale fields is a crucial mechanism in a
nonlinear dynamo saturation where turbulent magnetic helicity fluxes allow to avoid
catastrophic quenching of the α effect. The convective zone of the Sun (and solar-like
stars as well as galactic discs) are the source for production of turbulent magnetic
helicity fluxes. In the framework of the mean-field approach and the spectral τ ap-
proximation, we derive turbulent magnetic helicity fluxes using the Coulomb gauge
in a density-stratified turbulence. The turbulent magnetic helicity fluxes include non-
gradient and gradient contributions. The non-gradient magnetic helicity flux is pro-
portional to a nonlinear effective velocity (which vanishes in the absence of the density
stratification) multiplied by small-scale magnetic helicity, while the gradient contri-
butions describe turbulent magnetic diffusion of the small-scale magnetic helicity. In
addition, the turbulent magnetic helicity fluxes contain source terms proportional to
the kinetic α effect or its gradients, and also contributions caused by the large-scale
shear (solar differential rotation). We have demonstrated that the turbulent magnetic
helicity fluxes due to the kinetic α effect and its radial derivative in combination with
the nonlinear magnetic diffusion of the small-scale magnetic helicity are dominant in
the solar convective zone.

Key words: dynamo – MHD – Sun: interior — turbulence – activity

1 INTRODUCTION

The large-scale solar and galactic magnetic fields are gen-
erated by a combined action of helical turbulent motions
and large-scale differential rotation due to the αΩ dynamo
(see, e.g., Moffatt 1978; Parker 1979; Krause & Rädler 1980;
Zeldovich et al. 1983; Moffatt & Dormy 2019). A non-zero
kinetic helicity produced by a rotating density stratified con-
vective turbulence, causes the kinetic α effect. The dynamo
instability is saturated by nonlinear effects. One of the im-
portant nonlinear effect is the feedback of the growing large-
scale magnetic field on the plasma turbulent motions, so
that the turbulent transport coefficients (the α effect, the
effective pumping velocity and the turbulent magnetic dif-
fusion) depend on the mean magnetic field B. The simplest
nonlinear saturation mechanism of the dynamo instability
is related to the α quenching which prescribes the kinetic
α effect to be a decreasing function of the mean magnetic

field strength, e.g., α(B) = αK

(

1 +B
2
/B

2
eq

)−1
, where

αK ∝ −τ0 Hu is the kinetic α effect that is proportional

to the kinetic helicity Hu = 〈u·(∇×u)〉, B
2
eq = 4π ρ

〈

u2
〉

is the squared equipartition mean magnetic field, u is the

turbulent velocity field, τ0 is the turbulent time and ρ is the
mean density. This implies that the mean magnetic field
strength at which quenching becomes significant, is esti-
mated from the equipartition between the energy density
of the mean magnetic field and the turbulent kinetic en-
ergy density. When applied to galactic dynamos, this pic-
ture results in robust magnetic field models which are com-
patible with observations (see, e.g., Ruzmaikin et al. 1988;
Shukurov & Subramanian 2021). The above-mention non-
linearity is referred as algebraic nonlinearity.

However this picture is obviously oversimplified and var-
ious attempts to suggest a more advanced version of non-
linear dynamo theory have been undertaken (see, e.g., re-
views and books by Brandenburg & Subramanian 2005b;
Rüdiger et al. 2013; Rincon 2019; Rogachevskii 2021, and
references therein). The quantitative theories of the al-
gebraic nonlinearities of the α effect, the turbulent mag-
netic diffusion and the effective pumping velocity have been
developed using the quasi-linear approach for small fluid
and magnetic Reynolds numbers (Rüdiger & Kichatinov
1993; Kitchatinov et al. 1994; Rüdiger et al. 2013) and the
tau approach for large fluid and magnetic Reynolds num-
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2 N. Kleeorin and I. Rogachevskii

bers (Field et al. 1999; Rogachevskii & Kleeorin 2000, 2001,
2004, 2006).

In addition to the algebraic nonlinearity, there is also a
dynamic nonlinearity caused by an evolution of magnetic he-
licity density of small-scale fields during the nonlinear stage
of the mean-field dynamo. In particular, the α effect is the
sum of the kinetic and magnetic parts, α = αK +αm, where
the magnetic α effect, αm ∝ τ0 Hc/(12π ρ), is proportional
to the current helicity Hc = 〈b·(∇×b)〉 of the small-scale
magnetic field b (Pouquet et al. 1976). The dynamics of the
current helicity Hc is determined by the evolution of the
small-scale magnetic helicity density Hm = 〈a·b〉, where
magnetic fluctuations b = ∇×a and a are fluctuations of
magnetic vector potential.

Magnetic helicity is fundamental quantity in magneto-
hydrodynamics and plasma physics (see, e.g., Berger 1999).
In particular, the total magnetic helicity, i.e., the sum of
the magnetic helicity densities of the large-scale and small-
scale magnetic fields, HM+Hm, integrated over the volume,
∫

(HM + Hm) dr3, is conserved for very small microscopic
magnetic diffusivity η. Here HM = A·B is the magnetic he-
licity density of the large-scale field B = ∇×A. Signature of
magnetic helicity has been detected in many solar features,
including solar active regions (see, e.g., Pevtsov et al. 2014;
Zhang et al. 2006, 2012, and references therein).

The governing equation for small-scale magnetic helic-
ity density Hm has been derived for an isotropic turbu-
lence by Kleeorin & Ruzmaikin (1982) and for an arbitrary
anisotropic turbulence by Kleeorin & Rogachevskii (1999).
This equation has been used for analytical study of solar dy-
namos (Kleeorin et al. 1994, 1995) as well as for mean-field
numerical modeling of solar and galactic dynamos (see, e.g.,
Covas et al. 1997, 1998; Kleeorin et al. 2000, 2002, 2003b,a,
2016; Brandenburg & Subramanian 2005b; Sokoloff et al.
2006; Zhang et al. 2006, 2012; Del Sordo et al. 2013;
Safiullin et al. 2018).

As the dynamo amplifies the large-scale magnetic field,
the magnetic helicity density HM of the large-scale field
grows in time. In particular, the evolution of the large-scale
magnetic helicity density HM is determined by the following
equation:

∂HM

∂t
+∇ · F (M) = 2E ·B − 2ηHC , (1)

where E = 〈u×b〉 is the turbulent electromotive force
that determines generation and dissipation of the large-scale
magnetic field, 2E ·B is the source of HM due to the dynamo
generated large-scale magnetic field, F (M) is the flux of mag-
netic helicity density of the large-scale field that determines
its transport and HC = B·(∇×B) is the current helicity of
large-scale field.

Since the total magnetic helicity
∫

(HM + Hm) dr3

is conserved, the magnetic helicity density Hm of the
small-scale field changes during the dynamo action,
and its evolution is determined by the dynamic equa-
tion (Kleeorin & Ruzmaikin 1982; Zeldovich et al. 1983;
Kleeorin et al. 1995; Kleeorin & Rogachevskii 1999):

∂Hm

∂t
+∇ · F (m) = −2E ·B − 2ηHc , (2)

where −2E ·B is the source of Hm due to the dynamo gener-
ated large-scale magnetic field, F (m) is the flux of magnetic

helicity density of the small-scale field that determines its
transport and −2ηHc is the dissipation rate of Hm. The
source of the small-scale and large-scale magnetic helicity
densities is only located in turbulent region.

The characteristic decay time of the magnetic helic-
ity density Hm of the small-scale field is of the order of
Tm = τ0 Rm, while the characteristic time for the decay
of kinetic helicity is of the order of the turn-over time
τ0 = '0/u0 of turbulent eddies in the integral turbulence
scale '0, where Rm = '0 u0/η is the magnetic Reynolds num-
ber. The current helicity Hc of the small-scale field is not an
integral of motion and the characteristic decay time of Hc

varies from a short timescale τ0 to much larger timescales.
On the other hand, the characteristic decay times of the
current helicity of large-scale field, HC, and of the large-
scale magnetic helicity HM are of the order of the turbulent
diffusion time. For weakly inhomogeneous turbulence the
current helicity density Hc of the small-scale field is pro-
portional to the small-scale magnetic helicity density Hm

(Kleeorin & Rogachevskii 1999).
Using the steady-state solution of Eq. (2) with a zero

turbulent flux F (m) = 0 of magnetic helicity density of
small-scale field and a zero current helicity of large-scale
field, HC, it has been concluded that the critical mean mag-
netic field strength, Bcr, at which the dynamic α quenching
becomes significant, in fact is much lower than the equipar-
tition value, e.g. Bcr = Beq Rm−1/2 (Vainshtein & Cattaneo
1992; Gruzinov & Diamond 1994). In astrophysics, e.g., in
galactic disks and in the convective zone of the sun, mag-
netic Reynolds numbers are very large. Therefore, for large
magnetic Reynolds numbers the dynamo action should sat-
urate at a magnetic field strength that is much lower than
the equipartition value. This effect is referred as to a catas-
trophic quenching of the α effect (Vainshtein & Cattaneo
1992; Gruzinov & Diamond 1994). On the other hand, the
observed large-scale field strengths in spiral galaxies is of the
order of the equipartition value (see, e.g., Ruzmaikin et al.
1988; Shukurov & Subramanian 2021), and the observed so-
lar and stellar magnetic fields are much larger than Bcr

(see, e.g., Moffatt 1978; Parker 1979; Krause & Rädler 1980;
Zeldovich et al. 1983).

The evolution of magnetic helicity appears however
to be a more complicated process than can simply be
described by a balance of magnetic helicity in a given
volume. It is necessary to take into account fluxes of
magnetic helicity (Kleeorin et al. 2000). This implies that
the turbulent transport of magnetic helicity through the
boundaries (the open boundary conditions in simula-
tions) should be taken into account (Blackman & Field
2000). Different forms of magnetic helicity fluxes have
been suggested in various studies (Covas et al. 1997, 1998;
Kleeorin & Rogachevskii 1999; Kleeorin et al. 2000, 2002;
Vishniac & Cho 2001; Subramanian & Brandenburg 2004;
Brandenburg & Subramanian 2005b). Turbulent fluxes of
small-scale magnetic helicity fluxes have been measured in
numerical simulations (Käpylä et al. 2010; Mitra et al. 2010;
Hubbard & Brandenburg 2010, 2011, 2012; Del Sordo et al.
2013), and in solar observations (Chae et al. 2001;
Pariat et al. 2005; Pevtsov et al. 2014; Hawkes & Berger
2018).

Taking into account turbulent fluxes of the small-
scale magnetic helicity, it has been shown by nu-
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Turbulent magnetic helicity fluxes in solar convective zone 3

merical simulations that a nonlinear galactic dynamo
governed by a dynamic equation for the magnetic
helicity density Hm of small-scale field results in
a steady mean magnetic field comparable with the
equipartition magnetic field (see, e.g., Kleeorin et al.
2000, 2002, 2003b,a; Blackman & Brandenburg 2002;
Brandenburg & Subramanian 2005b; Shukurov et al. 2006;
Del Sordo et al. 2013). Numerical simulations demonstrate
that the dynamics of the small-scale magnetic helicity
in the presence of the turbulent magnetic helicity fluxes
play a crucial role in the solar dynamo as well (see,
e.g., Kleeorin et al. 2003b, 2016, 2020; Sokoloff et al. 2006;
Zhang et al. 2006, 2012; Käpylä et al. 2010; Guerrero et al.
2010; Hubbard & Brandenburg 2012; Del Sordo et al. 2013;
Safiullin et al. 2018; Rincon 2021).

Due to very important role of the turbulent magnetic
helicity fluxes in nonlinear dynamos, in the present study we
perform a rigorous derivation of these fluxes applying the
mean-field theory, adopting the Coulomb gauge and consid-
ering a strongly density-stratified turbulence. We show that
the turbulent magnetic helicity fluxes contain non-gradient
and gradient contributions. The non-gradient magnetic he-
licity fluxes are product of a nonlinear effective velocity and
small-scale magnetic helicity. The gradient contributions de-
termine a nonlinear magnetic diffusion of the small-scale
magnetic helicity. We also demonstrate that the turbulent
magnetic helicity fluxes include source terms proportional
to the kinetic α effect or its gradients. In the present study
we do not consider an algebraic quenching of the turbulent
magnetic helicity fluxes that is a subject of a separate study.

This paper is organized as follows. In Section 2, we de-
rive equation for the magnetic helicity of small-scale fields
which includes divergence of the turbulent magnetic helicity
flux. In Section 3 we discuss the results of calculations of the
turbulent flux of magnetic helicity of the small-scale fields.
In addition, we obtain a general form of turbulent flux of the
magnetic helicity using symmetry arguments. In Section 4,
we consider the turbulent magnetic helicity flux in the solar
convective zone. Finally, in Section 5, we discuss our results
and draw conclusions. In Appendixes A and B we discuss ap-
proximations and procedure of the derivation of turbulent
flux of magnetic helicity. In Appendix C we determine the
effect of large-scale shear on turbulent flux of the magnetic
helicity. Applying the method described in Appendixes A–
C, we determine various contributions to the turbulent flux
of the small-scale magnetic helicity in Appendix D. In par-
ticular, we present the general form of turbulent transport
coefficients entering in the turbulent flux of the small-scale
magnetic helicity. For better understanding of the physics
related to various contributions to the turbulent flux of the
small-scale magnetic helicity, in Appendix E we consider a
more simple case with a large-scale linear velocity shear and
present turbulent transport coefficients in the Cartesian co-
ordinates.

2 EQUATION FOR THE MAGNETIC

HELICITY

In this Section, we derive an equation for the small-scale
magnetic helicity. The induction equation for fluctuations

of magnetic field b reads

∂b
∂t

= ∇×
[

U × b + u×B + u× b− 〈u× b〉

−η∇× b
]

, (3)

where in the framework of the mean-field approach, we sep-
arate magnetic and velocity fields into mean and fluctua-
tions, B = B + b and B = 〈B〉 is the mean magnetic
field, U = U + u, and U = 〈U〉 is the mean fluid velocity
describing, e.g., the differential rotation, η is the magnetic
diffusion due to electrical conductivity of fluid. The equation
for magnetic fluctuations is obtained by subtracting induc-
tion equation for the the mean magnetic field B from that
for the total field B(t,x). The equation for fluctuations of
the vector potential a follows from induction equation (3)

∂a
∂t

= U × b + u×B + u× b− 〈u× b〉

−η∇× b+∇φ, (4)

where B = ∇ × A and A = A + a, and A = 〈A〉 is
the mean vector potential, b = ∇ × a and φ are fluctua-
tions of the scalar potential. We multiply Eq. (3) by a and
Eq. (4) by b, add them and average over an ensemble of
turbulent fields. This yields an equation for the magnetic
helicity Hm = 〈a(x) · b(x)〉 of the small-scale fields as

∂Hm

∂t
= −2E ·B − 2η〈b · (∇× b)〉 −∇ · F (m), (5)

where E = 〈u× b〉 is the turbulent electromotive force, and
the turbulent flux of magnetic helicity F (m) of the small-
scale fields is given by

F (m) = U Hm −
〈

b (a ·U)
〉

+
〈

u (a ·B)
〉

−B 〈a · u〉

−η 〈a× (∇× b)〉+ 〈a× (u× b)〉 − 〈bφ〉 . (6)

Using the Coulomb gauge ∇ · a = 0, we obtain that
∇ × b = −∆a and a = −∆−1

∇ × b. The Coulomb gauge
also allows us to find fluctuations of the scalar potential φ.
Indeed, equation for ∇ ·a which follows from Eq. (4), yields
expression for fluctuations of the scalar potential φ, so that
the correlation function 〈bi φ〉 reads

〈bi φ〉 = 〈bi aj〉 U j −
〈

bi ∆
−1 (∇× u)j

〉

Bj

−
〈

bi ∆
−1 bj

〉

W j +
〈

bi ∆
−1 uj

〉

(∇×B)j

−
〈

bi ∆
−1

∇ · (u× b)
〉

. (7)

where W = ∇ × U is the mean vorticity and 〈bi aj〉 =
−
〈

bi ∆
−1 (∇× b)j

〉

. Equations (6)–(7) yield the turbulent

flux of magnetic helicity F (m) of the small-scale fields as

F (m)
i = U i Hm +W j

〈

bi ∆
−1 bj

〉

+Bj 〈ui aj〉

−Bi 〈uj aj〉+Bj

〈

bi ∆
−1 (∇× u)j

〉

+ F (η)
i

−(∇×B)j
〈

bi ∆
−1 uj

〉

+ F (III)
i , (8)

where 〈ui aj〉 = −
〈

ui ∆
−1 (∇× b)j

〉

, F (η) =
−η 〈a× (∇× b)〉 is the flux caused by the microscopic
magnetic diffusion η and F (III) is the flux that is determined
by the third-order moments, is given by

F (III) =
〈

b∆−1
∇ · (u× b)

〉

+ 〈a× (u× b)〉 . (9)

Equations (5)–(9) are exact equations. Note that only in
the Coulomb gauge, the scalar potential φ is described by
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4 N. Kleeorin and I. Rogachevskii

the stationary equation. For all other gauge conditions, the
scalar potential φ is determined by a non-stationary equa-
tion. Also for the Coulomb gauge the relation between the
magnetic α effect and small-scale magnetic helicity is most
simple.

3 GENERAL FORM OF TURBULENT FLUX

OF THE MAGNETIC HELICITY

In this Section we discuss the results of calculations of the
turbulent flux of magnetic helicity of the small-scale fields.
General form of turbulent flux F (m) of the magnetic helic-
ity can be obtained from symmetry reasoning. Indeed, the
turbulent flux F (m) is the pseudo-vector which should con-
tain two pseudo-scalars: the magnetic helicity, Hm, and the
kinetic α effect, αK , and their first spatial derivatives. In

addition, the contributions F (S0)
i to the turbulent magnetic

helicity flux caused by the large-scale shear (differential ro-
tation) should contain the the pseudo-vector W = ∇ ×U ,
where U = δΩ× r is the large-scale velocity describing the
differential rotation δΩ.

All turbulent transport coefficients entering in the tur-
bulent flux F (m) of magnetic helicity of the small-scale fields
should be quadratic in the large-scale magnetic field B, i.e.,

they should be proportional to B
2
or V

2
A = B

2
/(4πρ), where

ρ is the mean plasma density and V A is the mean Alfvén
speed. On the other hand, the turbulent flux F (m) of the
magnetic helicity should vanish in the absence of turbulence.
This implies that all turbulent transport coefficients enter-
ing in the turbulent flux F (m) should be proportional to
turbulent correlation time τ0 or turbulent integral scale '0.
Some of the turbulent transport coefficients are caused by
the plasma density stratification, i.e., they are proportional
to λ = −∇ ln ρ.

Using the theoretical approach based on the spectral τ
approximation which is valid for large fluid and magnetic
Reynolds numbers, and the multi-scale approach, we obtain
the turbulent flux of the small-scale magnetic helicity as

F (m)
i =

(

U i + V (H)
i

)

Hm −D(H)
ij ∇jHm +N (α)

i αK

+M (α)
ij ∇jαK + F (S0)

i , (10)

where αK = −τ0 Hu/3 is the kinetic α effect. Details of the
derivation of Eq. (10) are described in Appendixes A–C. The
general form of the turbulent transport coefficients entering
in the turbulent flux (10) of magnetic helicity of the small-
scale fields is given by Eqs. (D2)–(D6) in Appendix D. These
turbulent transport coefficients of the turbulent magnetic
helicity flux in spherical coordinates are given in the next
section and in the Cartesian coordinates are discussed in
Appendix E.

The turbulent flux of the small-scale magnetic helic-
ity includes the non-gradient and gradient contributions.
The non-gradient contribution to the turbulent flux of mag-
netic helicity is proportional to the sum of the mean velocity
U = δΩ×r and the turbulent pumping velocity V (H) which
is multiplied by small-scale magnetic helicity Hm, while the
gradient contribution −D(H)

ij ∇jHm describe the turbulent
magnetic diffusion of the small-scale magnetic helicity. The
effective pumping velocity of the small-scale magnetic helic-
ity V (H) vanishes in the absence of the density stratification.

In addition, the turbulent magnetic helicity flux contains the
source term N (α) αK proportional to the kinetic α effect,

and the source term −M (α)
ij ∇jαK proportional to the gra-

dient ∇jαK of the kinetic α effect. The turbulent magnetic
helicity flux also have contributions caused by the large-scale
shear (differential rotation) in the turbulent flow.

We assume that the turbulent flux of the magnetic he-
licity F (III) containing the third-order moments [see equa-
tion (9)], is determined using the turbulent diffusion ap-

proximation as F (III) = −D(H)
T ∇Hm. The contribution to

the turbulent magnetic helicity flux,−D(H)
T ∇Hm, caused by

the turbulent diffusion, has been used in mean-field numer-
ical simulations by Covas et al. (1997, 1998); Kleeorin et al.
(2002, 2003a).

The turbulent diffusion of the small-scale magnetic he-
licity can be interpreted as follows. The random flows exist-
ing in the interstellar medium consist of a combination of
small-scale motions, which are affected by magnetic forces
resulting in a steady-state of the dynamo, and a micro-
turbulence which is supported by a strong random driver
(e.g., supernovae explosions which can be considered as inde-
pendent of the galactic magnetic field). The large-scale mag-
netic field is smoothed over both kinds of turbulent fluctua-
tions, while the small-scale magnetic field is smoothed over
micro-turbulent fluctuations only. It is the smoothing over
the micro-turbulent fluctuations that gives the coefficient
D(H)

T = CDη
T

with a free dimensionless constant CD ∼ 0.1.
Here η

T
is the turbulent diffusion coefficient of the mean

magnetic field.
The magnetic helicity flux F (η) = −η 〈a× (∇× b)〉

due to the microscopic magnetic diffusion η is given by
F (η) = − 1

3η∇Hm. This flux in astrophysical systems is very
small and neglected here.

4 TURBULENT MAGNETIC HELICITY FLUX

IN THE SOLAR CONVECTIVE ZONE

In this Section we discuss the results of calculations of the
turbulent magnetic helicity flux in the solar convective zone,
where we use spherical coordinates (r,ϑ,ϕ). The radial tur-
bulent flux of the small-scale magnetic helicity is given by

F (m)
r = V (H)

r Hm −D(H)
rj ∇jHm +N (α)

r αK

+M (α)
rj ∇jαK + F (S0)

r . (11)

The general forms of the turbulent transport coefficients en-
tering in the turbulent flux F (m) of magnetic helicity of
the small-scale fields are given by Eqs. (D2)–(D6) in Ap-
pendix D. In view of applications to the solar convective
zone, the turbulent transport coefficients of the turbulent
magnetic helicity flux in spherical coordinates are specified
below:

V (H)
r = −

1
15

τ0 V
2
A λ

[

1 + 7β2
r −

173
14

sinϑ τ0 δΩβrβϕ

]

, (12)

D(H)
rr = D(H)

T +
1
30

τ0 V
2
A

(

5− 4β2
r

)

, (13)

D(H)
rϑ =

2(80 + 17q)
105

τ 2
0 V

2
A δΩβr βϕ cos ϑ, (14)
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Turbulent magnetic helicity fluxes in solar convective zone 5

N (α)
r = −

1
10

'20 B
2
λ

[

1 +
7q − 2

q
β2
r

−
216(q − 1)
7(3q − 1)

τ0 δΩβr βϕ sinϑ

]

, (15)

M (α)
rr =

2q − 1
20q

'20 B
2
[

1 +
20q − 23
2q − 1

β2
r

−
32q(q − 1)

(2q − 1) (3q − 1)
τ0 δΩ βr βϕ sinϑ

]

, (16)

M (α)
rϑ =

8(q − 1)
3q − 1

'20 B
2
τ0 δΩβr βϕ cos ϑ, (17)

F (S0)
r = −

2
9
δΩ cos ϑ

{

4 '20 B
2
r +

[

V
2
A

〈u2〉

(

1−
3
11

β2
r

)

+
3(q − 1)
q + 1

]

'2b
〈

b2
〉

}

, (18)

where β = B/B is the unit vector along the mean mag-
netic field, U = δΩ r sinϑeϕ is the mean velocity caused
by the differential rotation δΩ = Ω(r,ϑ) − Ω(r = R",ϑ).
Here Ω(r = R",ϑ) = Ω0(1 − C2 cos

2 ϑ − C4 cos
4 ϑ) with

Ω0 = 2.83 × 10−6 s−1, C2 = 0.121 and C4 = 0.173
(LaBonte & Howard 1982), R" is the solar radius, λ = λ er,
'b is the energy containing scale of magnetic fluctuations
with a zero mean magnetic field and q is the exponent
the spectrum of the turbulent kinetic energy (the exponent
q = 5/3 corresponds to the Kolmogorov spectrum of the
turbulent kinetic energy).

In derivation of Eqs. (12)–(18), we take into account
that for weakly inhomogeneous turbulence Hc ≈ Hm/'20,
and we neglect small terms ∼ O['20/L

2
m] with Lm being char-

acteristic scale of spatial variations of Hm. We neglect also
small contributions proportional to spatial derivatives of the
mean magnetic field, and spatial derivatives of

〈

u2
〉

and δΩ.
Let us discuss the obtained results. For illustration, in

Fig. 1 we show the radial profile of the total angular veloc-
ity Ω(r)/Ω" in the solar convective zone that includes the
uniform and differential rotation specified for the latitude
φ∗ = 30◦ . The theoretical profile (solid line) of the to-
tal angular velocity (Rogachevskii & Kleeorin 2018) is com-
pared with the radial profile of the solar angular velocity
(stars) obtained from the helioseismology observational data
(Kosovichev et al. 1997) specified for the latitude φ = 30◦

and normalized by the solar rotation frequency Ω"(φ∗ = 0)
at the equator, where Ω/Ω" is given by Eq. (3.14) de-
rived by Rogachevskii & Kleeorin (2018). In Figs. 1–2 we
also show the radial profile of the kinetic α effect, αK/αmax

which is specified for the latitude φ = 30◦ and given by
Eq. (22) derived by Kleeorin & Rogachevskii (2003).

In the upper part of the solar convective zone for
the latitude φ∗ > 0 (the Northern Hemisphere), the ki-
netic α effect is positive, αK > 0 (see Fig. 2). On the
other hand, the magnetic α effect in this region is nega-
tive, i.e., αM = τ0 Hc/(4πρ) < 0. This implies that the
current helicity Hc < 0 as well as the magnetic helicity
Hm < 0 are negative the Northern Hemisphere. Here for
simplicity, we choose the radial profile of the poloidal and
toroidal field as Br = Br0 sin[π(r − 0.73R")/(0.6R")] and

0.8 0.84 0.88 0.92 0.96
0.94

0.96

0.98

1.00

Figure 1. The theoretical radial profiles of the total angular ve-
locity Ω(r)/Ω" (solid) that includes the uniform and differential
rotation specified for the latitude φ∗ = 30◦ and the normalized
kinetic α effect, αK/αmax (dashed). The theoretical profile of the
total angular velocity is compared with the radial profile of the
solar angular velocity obtained from the helioseismology observa-
tional data (stars) specified for the latitude φ∗ = 30◦ and normal-
ized by the solar rotation frequency Ω"(φ∗ = 0) at the equator
(Kosovichev et al. 1997), where R" is the solar radius. The profile

αK(r) ≡ α
(K)

ϕϕ is given by Eq. (22) derived by Kleeorin & Ro-
gachevskii (2003), and Ω(r)/Ω" is given by Eq. (3.14) derived
by Rogachevskii & Kleeorin (2018).

0.75 0.8 0.85 0.9 0.95
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. The radial profile of the normalized kinetic α effect,
α̃K = αK/αmax, specified for the latitude φ∗ = 30◦ and given by
Eq. (22) derived by Kleeorin & Rogachevskii (2003).

Bϕ = Bϕ0 cos[π(r − 0.73R")/(0.6R")], where Br0 is the
surface mean magnetic field measured in Gauss. To avoid
catastrophic quenching, the radial component of the turbu-
lent flux of the small-scale magnetic helicity F (m)

r < 0 should
be negative for the Northern Hemisphere.

In Figs. 3 and 4 we show the radial profiles of the
effective pumping velocity V (H)

r (r) and turbulent diffusion

D(H)
rr (r) of the small-scale magnetic helicity. In Figs. 5 and 6

we plot the radial profiles of the turbulent magnetic helic-
ity fluxes caused by the source terms F (α)

1 (r) = N (α)
r αK

and F (α)
2 (r) = M (α)

rr ∇rαK , which are proportional to the
kinetic α effect and its radial derivative, as well as their
sum F (α)

r (r) = N (α)
r αK + M (α)

rr ∇rαK . In Fig. 6 we also
show the contribution F (S0)(r) to the turbulent magnetic
helicity flux caused by the large-scale shear (differential
rotation). Finally, in Fig. 7 we plot the radial profile of
the total source flux of the magnetic helicity Ftot(r) =

N (α)
r αK + M (α)

rr ∇rαK + F (S0)
r that is independent of the

magnetic helicity and its radial derivative.
As follows from Figs. 3–7 as well as Eqs. (11)–(18), the

negative contribution to the turbulent magnetic helicity flux
F (m)
r in the range of the generation of the mean magnetic

field, is due to the source flux F (α)
r = N (α)

r αK +M (α)
rr ∇rαK ,

and the contribution F (S0) to the turbulent magnetic he-
licity flux caused by the large-scale shear (differential ro-
tation). Here we take into account that δΩ > 0 at 0.8 <

© 0000 RAS, MNRAS 000, 000–000
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0.75 0.80 0.85 0.90 0.95

-0.5

-1.0

-1.5

-2.0

Figure 3. The radial profile of the effective pumping velocity

V (H)
r of the small-scale magnetic helicity given by Eq. (12), and

measured in m s−1.

0.75 0.80 0.85 0.90 0.95

0.5

1.0

1.5

2.0

Figure 4. The radial profile of turbulent diffusion D(H)
rr (r) of the

small-scale magnetic helicity given by Eq. (13) and measured in
cm2 s−1.

0.92 0.94 0.96 0.98

-15.0
-12.5
-10.0
-7.5
-5.0
-2.5
0.0
2.5

Figure 5. The radial profile of the turbulent magnetic helicity

fluxes caused by the source terms F (α)
1 = N(α)

r αK (dashed) and

F (α)
2 = M (α)

rr ∇rαK (dashed-dotted) which are proportional to
the kinetic α effect and its radial derivative, as well as their sum

F (α)
r = N(α)

r αK +M (α)
rr ∇rαK (solid), where N(α)

r and M (α)
rr are

given by Eqs. (15) and (16), respectively. The fluxes are specified
for the latitude φ∗ = 30◦ and measured in G2 cm2 s−1.

0.75 0.8 0.85 0.9 0.95
-10

-7.5

-5.0

-2.5

0.0

2.5

Figure 6. The radial profiles of the turbulent magnetic helicity

fluxes caused by the source terms F (α)
1 = N(α)

r αK (solid), F (α)
2 =

M (α)
rr ∇rαK (dashed) and the contribution F (S0)

r (dashed-dotted)
to the turbulent magnetic helicity flux caused by the large-scale

shear (differential rotation) , where N(α)
r , M (α)

rr and F (S0)
r are

given by Eqs. (15), (16) and (18), respectively. The fluxes are
specified for the latitude φ∗ = 30◦ and measured in G2 cm2 s−1.

0.75 0.8 0.85 0.9 0.95
-7.5

-5.0

-2.5

0.0

2.5

Figure 7. The radial profile of the total source flux Ftot =

N(α)
r αK +M (α)

rr ∇rαK +F (S0)
r of the magnetic helicity that is in-

dependent of the magnetic helicity and its radial derivative. Here
the flux is measured in G2 cm2 s−1.

0.75 0.8 0.85 0.9 0.95

-7.5

-5.0

-2.5

0.0

Figure 8. Turbulent diffusion flux r2F
(D)
r (solid line) and the

flux r2 [F (D)
r (r)+Ftot(r)] (dashed-dotted line) of magnetic helic-

ity per unit solid angle which are measured in Mx2 h−1.

r/R" < 1 (see Fig. 1), where the differential rotation
δΩ = Ω(r)− Ω(r = R").

The small-scale magnetic helicity is not accumulated
inside the solar convective zone due to turbulent magnetic
diffusion flux, F (D)

r . In Fig. 8 we show the turbulent diffusion
flux r2F (D)

r (solid line) of magnetic helicity per unit solid

angle and the flux [F (D)
r (r)+Ftot(r)] r2 (dashed-dotted line)

of magnetic helicity per unit solid angle which are measured
in Mx2 h−1. As follows from Fig. 8, the flux [F (D)

r (r) +
Ftot(r)] r2 (the sum of the turbulent diffusion flux and total
source flux of magnetic helicity) of small-scale field per unit
solid angle is independent of r, i.e.,

[F (D)
r (r) + Ftot(r)] r

2 ≈ Ftot(r = 0.73R") (0.73R")2. (19)

Here we take into account that the turbulent diffusion flux
F (D)
r (r = 0.73R") → 0 vanishes at the bottom of the con-

vective zone, r = 0.73R", where the turbulence intensity
vanishes (see Fig. 8). Equation (19) implies that there is
no accumulation of small-scale magnetic helicity inside the
solar convective zone.

In Fig. 9 we compare the theoretical predictions for
flux ΦD ≡ F (D)

r (r = R")R2
" δφ∗ with the observational

values of ΦD which are taken from Fig. 8a by Chae et al.
(2001), where time variations of the rates of magnetic helic-
ity change by photospheric motions (which do not include
differential rotation) are shown. Here the flux ΦD is mea-
sured in Mx2 h−1 and δφ∗ = 2π sin(π/4) is the solid angle
corresponding to the thickness of the Royal sunspot region.
The theoretical values for ΦD are given for different values of
the mean magnetic field, Bbot and Btop, at the bottom and
top of the solar convective zone (see the caption of Fig. 9).
Note that the measurements of the magnetic helicity flux
are based on the equation ∂Hm/∂t = −2

∮

(u · ap) bz dS

© 0000 RAS, MNRAS 000, 000–000
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16/08 17/08 18/08 19/08

-10.0

-7.5
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-2.5
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2.5

Figure 9. Comparison of the theoretical predictions for ΦD =

F (D)
r (r = R")R2

"
δφ∗ with the observational values of ΦD (slant-

ing crosses) which are taken from Fig. 8a by Chae et al. (2001),
where time variations of the rates of magnetic helicity change
by photospheric motions (which do not include differential ro-
tation) are shown. Here the flux ΦD is measured in Mx2 h−1

and δφ∗ = 2π sin(π/4) is the solid angle corresponding to the
thickness of the Royal sunspot region. The theoretical values for
ΦD are given for different values of the mean magnetic field, Bbot

and Btop, at the bottom and top of the solar convective zone (i.e.,
thick solid line is for Bbot = 103 G and Btop = 8 G; dashed line
is for Bbot = 1.4 × 103 G and Btop = 11 G and dashed-dotted
line is for Bbot = 2× 103 G and Btop = 16 G).

(Chae et al. 2001; Pevtsov et al. 2014), where we use here
the lower-case letters for the small-scale fields. This im-
plies that the measurements by Chae et al. (2001) are based
on the calculation of the third-order moment, 〈(u · ap) bz〉,
which we describe using the turbulent diffusion approxima-
tion, F (D)

r = −D(H)
rr ∇rHm. As follows from Fig. 9, the the-

oretical predictions for flux ΦD are in agreement with the
observational values of ΦD.

5 DISCUSSION AND CONCLUSIONS

In the present study, turbulent magnetic helicity fluxes of
small-scale field are derived applying the mean-field ap-
proach and the spectral τ approximation using the Coulomb
gauge in a density-stratified turbulence. The turbulent mag-
netic helicity fluxes contain non-gradient contribution that
is proportional to the effective pumping velocity multiplied
by the small-scale magnetic helicity. There is the gradient
contribution to the turbulent magnetic helicity flux describ-
ing the turbulent magnetic diffusion of the small-scale mag-
netic helicity. The turbulent magnetic helicity flux includes
also the source term proportional to the kinetic α effect or
its radial gradient. Finally, there is a contribution to the
turbulent magnetic helicity flux due to the solar differential
rotation.

The convective zone of the Sun and solar-like stars as
well as galactic discs are the source for production of turbu-
lent magnetic helicity fluxes. The turbulent magnetic helic-
ity flux due to the kinetic α effect and its radial derivative
in combination with the turbulent magnetic diffusion of the
small-scale magnetic helicity are dominant in the solar con-
vective zone. The turbulent magnetic helicity fluxes result in
evacuation of small-scale magnetic helicity from the regions
of generation of the solar magnetic field, which allows to
avoid the catastrophic quenching of the α effect. The small-
scale magnetic helicity is not accumulated inside the solar
convective zone due to turbulent magnetic diffusion flux.

The magnetic helicity fluxes are measured in the solar

surface. Most of the measurements of the magnetic helicity
fluxes are performed in active regions. The contributions to
the measured magnetic helicity flux are from both, the solar
surface and solar interiors.

ACKNOWLEDGMENTS

We acknowledge the discussions with participants of the
Nordita Scientific Program on ”Magnetic field evolution in
low density or strongly stratified plasmas”, Stockholm (May
– June 2022).

DATA AVAILABILITY

There are no new data associated with this article.

REFERENCES

Berger M. A., 1999, Plasma Physics and Controlled Fusion,
41, B167

Blackman E. G., Brandenburg A., 2002, Astrophys. J., 579,
359

Blackman E. G., Field G. B., 2000, Astrophys. J., 534, 984
Brandenburg A., Subramanian K., 2005a, Astron. Nachr.,
326, 400

Brandenburg A., Subramanian K., 2005b, Phys. Rep., 417,
1

Brandenburg A., Subramanian K., 2005c, Astron. Astro-
phys., 439, 835
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APPENDIX A: DERIVATION OF TURBULENT

FLUX OF MAGNETIC HELICITY

In this Section we derive turbulent flux of the magnetic he-
licity. We consider developed turbulence with large fluid and
magnetic Reynolds numbers, so that the Strouhal number
(the ratio of turbulent time τ to turn-over time '0/u0) is
of the order of unity, and the turbulent correlation time is
scale-dependent, like in Kolmogorov type turbulence. In this
case, we perform the Fourier transformation only in k space
but not in ω space, as is usually done in studies of turbulent
transport in a fully developed Kolmogorov-type turbulence.
We take into account the nonlinear terms in equations for ve-
locity and magnetic fluctuations and apply the τ approach.

The τ approach is a universal tool in turbulent trans-
port for strongly nonlinear systems that allows us to ob-
tain closed results and compare them with the results of
laboratory experiments, observations, and numerical simu-
lations. The τ approximation reproduces many well-known
phenomena found by other methods in turbulent transport
of particles and magnetic fields, in turbulent convection and
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stably stratified turbulent flows for large fluid and magnetic
Reynolds and Péclet numbers.

To derive equations for the turbulent fluxes of the mag-
netic helicity, we need expressions in a Fourier space for
the cross-helicity tensor gij(k) = 〈ui(t,k) bj(t,−k)〉 and
the tensor hij(k) = 〈bi(t,k) bj(t,−k)〉 for magnetic fluctua-
tions. Indeed, as follows from Eq. (8), the turbulent fluxes of
the magnetic helicity depend only on the second moments
gij and hij (except for the last two terms, η 〈a× (∇× b)〉
and F (III) which are considered separately). Using induction
equation (3) for magnetic fluctuations b and the Navier-
Stokes equation for velocity fluctuations u written in a
Fourier space, we derive equations for the cross-helicity ten-
sor gij(k) and the tensor hij(k) for magnetic fluctuations
as

∂gij(k)
∂t

= −

[

ik·B −
1
2
B·∇

]

[

fij(k)− hij(k)
]

+M̂(b)g(III)ij (k), (A1)

∂hij(k)
∂t

= i
(

k·B
)[

gij(k)− gji(−k)
]

+
1
2

(

B·∇

)[

gij(k) + gji(−k)
]

+ M̂(b)h(III)
ij (k), (A2)

where in Eqs. (A1)–(A2) we neglect terms proportional
to spatial derivatives of the mean magnetic field [i.e.,
terms ∝ O

(

∇iBj

)

]. Here fij(k) = 〈ui(t,k) uj(t,−k)〉,

and M̂(b)g(III)ij and M̂(b)h(III)
ij are the third-order moment

terms appearing due to the nonlinear terms:

M̂(b)g(III)ij (k) = −
〈

ui(t,k) T
(b)
j (t,−k)

〉

+

〈

∂ui(t,k)
∂t

bj(t,−k)

〉

, (A3)

M̂(b)h(III)
ij (k) = −

〈

bi(t,k)T
(b)
j (t,−k)

〉

−
〈

T (b)
i (t,k) bj(t,−k)

〉

, (A4)

where

T (b)
j = [∇× (u×b− 〈u×b〉)]j . (A5)

Equations (A1)-(A2) for the second moment includes
the first-order spatial differential operators applied to the
third-order moments M̂(b)g(III)ij (k) and M̂(b)h(III)

ij (k). A
problem arises how to close the system, i.e., how to express
the third-order moments through the lower moments, gij
and hij denoted as F (II). We use the spectral τ approxi-
mation which postulates that the deviations of the third-
order moments, denoted as M̂F (III)(k), from the contribu-
tions to these terms afforded by a background turbulence,
M̂F (III,0)(k), can be expressed through the similar devia-
tions of the second moments, F (II)(k)− F (II,0)(k) as

M̂F (III)(k)− M̂F (III,0)(k) = −
1

τr(k)

[

F (II)(k)

−F (II,0)(k)
]

, (A6)

where τr(k) is the scale-dependent relaxation time, which
can be identified with the correlation time τ (k) of the tur-
bulent velocity field for large fluid and magnetic Reynolds

numbers. The functions with the superscript (0) corre-
spond to the background turbulence with a zero mean
magnetic field. Validation of the τ approximation for
different situations has been performed in various nu-
merical simulations (Brandenburg et al. 2004, 2008, 2012;
Brandenburg & Subramanian 2005b,c,a; Rädler et al. 2011;
Rogachevskii et al. 2011, 2012, 2018; Haugen et al. 2012;
Elperin et al. 2017). When the mean magnetic field is zero,
the turbulent electromotive force vanishes, which implies
that g(0)ij (k) = 0. We also take into account magnetic fluctu-
ations caused by a small-scale dynamo (the dynamo with a
zero mean magnetic field). Consequently, Eq. (A6) reduces

to M̂(b)g(III)ij (k) = −gij(k)/τ (k) and M̂(b)h(III)
ij (k) =

−[hij(k)− h(0)
ij (k)]/τ (k).

We assume that the characteristic time of variation
of the second moments gij(k) and hij(k) are substantially
larger than the correlation time τ (k) for all turbulence
scales. Therefore, in a steady-state Eqs. (A1) and (A2) yield
the following formulae for the cross-helicity tensor gij(k) =
〈ui(k) bj(−k)〉, and the function hij(k) = 〈bi(k) bj(−k)〉:

gij(k) = −τ (k)

{

[

i
(

k·B
)

−
1
2

(

B·∇

)] [

fij(k)

−hij(k)
]

− Bj

(

i kn −
1
2
∇n

)

fin(k)

}

, (A7)

hij(k) = h(0)
ij (k) + τ 2(k)

(

k·B
)

[

2
(

k·B
)

fij(k)

−kn
(

Bj fin(k) +Bi fnj(k)
)

]

. (A8)

In Eqs. (A7)–(A8) we neglect small contributions propor-
tional to spatial derivatives of the mean magnetic field. Since
we consider a one way coupling (i.e., we do not consider the
algebraic quenching of the turbulent fluxes of the magnetic
helicity), the correlation functions fij and hij in the right-

hand sides of Eqs. (A7)–(A8) should be replaced by f (0)
ij and

h(0)
ij , respectively.

We use the following model for the second moment,
f (0)
ij (k,R) = 〈ui(k) uj(−k)〉(0) of velocity fluctuations in
density stratified and helical turbulence in a Fourier space
(Rädler et al. 2003):

f (0)
ij =

Eu(k)
8πk2

{

[

(δij − kij) +
i
k2

(

λ̃ikj − λ̃jki
)

]

〈

u2〉

−
1
k2

[

iεijp kp + (εjpm kip + εipm kjp)λ̃m

]

Hu

}

, (A9)

where δij is the Kronecker tensor, kij = ki kj/k
2 and

λ̃m = λm − ∇m/2. The energy spectrum function Eu(k)
of velocity fluctuations in the inertial range of turbulence
is given by Eu(k) = (q − 1) k−1

0 (k/k0)
−q , where the ex-

ponent q = 5/3 corresponds to the Kolmogorov spectrum,
k0 ! k ! kν , the wave number k0 = 1/'0, the length '0
is the maximum scale of random motions, the wave num-
ber kν = '−1

ν , the length 'ν = '0Re−3/4 is the Kolmogorov
(viscous) scale. The expression for the turbulent correlation
time is given by τ (k) = 2 τ0 (k/k0)

1−q , where τ0 = '0/u0 is
the characteristic turbulent time. In Eq. (A9) we take into
account inhomogeneity of the kinetic helicity.

The model for the second moment, h(0)
ij (k,R) =

〈bi(k) bj(−k)〉(0), of magnetic fluctuations in a Fourier space
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is analogous to equation (A9)

h(0)
ij =

1
8πk2

{

Eb(k) (δij − kij)
〈

b2
〉

−
1
k2

[

iεijp kp

−
1
2
(εjpm kip + εipm kjp)∇m

]

Hc δ(k − k0)

}

, (A10)

where Hc = 〈b · (∇× b)〉 is the current helicity, Eb(k) =
(qm − 1) k−1

b (k/kb)
−qm is the magnetic energy spectrum

function in the range kb ! k ! kη, the wave number
kb = 1/'b, the length 'b is the maximum scale of magnetic
fluctuations caused by the small-scale dynamo, and the ex-
ponent qm = 5/3 corresponds to the Kolmogorov spectrum
for the magnetic energy. In Eq. (A10) we take into account
inhomogeneity of the current helicity. We also take into ac-
count that due to the realizability condition, the current
helicity of the small-scale field is located at the integral tur-
bulence scale (Kleeorin & Rogachevskii 1999).

For the integration over angles in k-space we use the
following integrals:

∫ 2π

0

dϕ

∫ π

0

sin ϑ dϑ kij =
4π
3

δij , (A11)

∫ 2π

0

dϕ

∫ π

0

sin ϑ dϑ kijmn =
4π
15

∆ijmn, (A12)

∫ 2π

0

dϕ

∫ π

0

sin ϑ dϑ kijmnpq =
4π
105

∆ijmnpq , (A13)

where

∆ijmn = δijδmn + δimδjn + δinδjm, (A14)

∆ijmnpq = ∆mnpq δij +∆jmnq δip +∆imnq δjp

+∆jmnp δiq +∆imnp δjq +∆ijmn δpq −∆ijpq δmn,

(A15)

and kij = ki kj/k
2, kijmn = ki kj km kn/k

4 and
kijmnpq = ki kj km kn kp kq/k

6. We also take into account
that ∆ijmm = 5δij and ∆ijmnpp = 7∆ijmn.

For the integration over k we use the following integrals
for large Reynolds numbers, Re= u0'0/ν + 1:

∫ kν

k0

τ (k)Eu(k) dk = τ0, (A16)

∫ kν

k0

τ (k)Eu(k)
k2

dk =
q − 1
q

τ0 '
2
0, (A17)

∫ kν

k0

τ 2(k)Eu(k)
k2

dk =
4(q − 1)
3q − 1

τ 2
0 '20, (A18)

∫ kν

k0

τ 2(k)Eu(k) dk =
4
3
τ 2
0 . (A19)

Using Eqs. (A7)–(B15), and integrating in k space, we
determine various contributions (8) to the turbulent flux of
the small-scale magnetic helicity, see also Appendix D. The
details of the derivations of the effect of large-scale shear
on turbulent fluxes of the magnetic helicity are discussed in
Appendix C.

APPENDIX B: DERIVATION OF EQUATIONS

FOR THE SECOND MOMENTS

In this Appendix we derive Eqs. (A1)–(A2) for the cross
helicity tensor gij(k) = 〈ui(t,k) bj(t,−k)〉 and the tensor
hij(k) = 〈bi(t,k) bj(t,−k)〉 for magnetic fluctuations. To
this end, we perform several calculations that are similar
to the following. We use the equation for magnetic fluctu-
ations obtained by subtracting equation for the mean mag-
netic field from the equation for the total field:

∂b
∂t

−∇× (u×b− 〈u×b〉)− η∆b = (B·∇)u− (u·∇)B.

(B1)

The source term, (B·∇)u, in the right hand side of Eq. (B1)
in a Fourier space reads:

[(

B·∇
)

uj

]

k
= i kp

∫

Bp(Q)uj(k −Q) dQ, (B2)

so that the induction equation for bj(k2) in k space is given
by:

∂bj(k2)
∂t

= i k(2)
p

∫

Bp(Q)uj(k2 −Q) dQ

−un(k2)∇nBj +N (b)
j (k2), (B3)

where k(2) ≡ k2 = −k+K/2. We use the identity:

∂
∂t

〈ui(k1, t) bj(k2, t)〉 =

〈

∂ui(k1, t)
∂t

bj(k2, t)

〉

+

〈

ui(k1, t)
∂bj(k2, t)

∂t

〉

. (B4)

First we derive equation for the second term in the right
hand side of Eq. (B4). To this end, we multiply Eq. (B3)
by ui(k1) and averaging over ensemble of turbulent velocity
field, where k1 = k +K/2. This yields:

〈

ui(k1)
∂bj(k2)

∂t

〉

= i (−kp +Kp/2)

∫

dQBp(Q)

×〈ui(k1)uj(k2 −Q)〉 − 〈ui(k1)un(k2)〉 ∇nBj

+
〈

ui(k1)N
(b)
j (k2)

〉

, (B5)

where for brevity of notations we omit the argument t in the
velocity and magnetic fields. Next, we perform in Eq. (B5)
the Fourier transformation in the large-scale variable K, i.e.,
we use the transformation

F (R) =

∫

F (K) exp(iK·R) dK.

The first term Sij(k,R) in the right hand side of the ob-
tained equation [which originates from the first term in the
right hand side of Eq. (B3)], is given by:

Sij(k,R) = i

∫ ∫

Bp(Q) (−kp +Kp/2) exp(iK·R)

×〈ui(k+K/2)uj(−k+K/2 −Q)〉 dK dQ. (B6)

Next, we introduce new variables:

k̃ = (k̃1 − k̃2)/2 = k+Q/2,

K̃ = k̃1 + k̃2 = K −Q, (B7)

where

k̃1 = k+K/2, k̃2 = −k+K/2−Q. (B8)
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Therefore, Eq. (B6) in the new variables reads

Sij(k,R) = i

∫ ∫

fij (k +Q/2,K −Q) Bp(Q)

× (−kp +Kp/2) exp (iK·R) dK dQ. (B9)

Since |Q| , |k|, we use the Taylor expansion

fij(k +Q/2,K −Q) - fij(k,K −Q)

+
1
2
∂fij(k,K −Q)

∂ks
Qs +O(Q2), (B10)

and the following identity:

∇p[fij(k,R)Bp(R)] = i

∫

dKKp[fij(k,R)Bp(R)]K

× exp (iK·R), (B11)

where

[fij(k,R)Bp(R)]K =

∫

fij(k,K −Q)Bp(Q) dQ.

(B12)

Therefore, Eqs. (B9)–(B11) yield

Sij(k,R) -

[

−i (k ·B) +
1
2
(B ·∇)

]

fij(k,R)

−
1
2
kp

∂fij(k)
∂ks

∇sBp. (B13)

We take into account that the terms in gij(k,R) with
symmetric tensors with respect to the indexes ”i” and ”j”
do not contribute to the turbulent electromotive force be-
cause Em = εmij

∫

gij(k,R) dk. In gij(k,R) we also neglect
the second and higher derivatives over R. This procedure
yields Eq. (A1). Similar calculations are performed to de-
rive Eq. (A2).

To determine various contributions to the turbulent flux
of small-scale magnetic helicity, we use the following identi-
ties:

(

∆−1)

k1
= −k−2

[

1 +
i (k ·∇)

k2

]

, (B14)

(

∆−1)

k2
= −k−2

[

1−
i (k ·∇)

k2

]

. (B15)

APPENDIX C: EFFECT OF LARGE-SCALE

SHEAR

In this Appendix we determine the effect of large-scale
shear on turbulent fluxes of the magnetic helicity. The
cross-helicity tensor g(S)

ij (k) = 〈vi(k) bj(−k)〉 in turbulence
with large-scale shear is given by (Rogachevskii & Kleeorin
2004):

g(S)
ij (k) = −i τ (k ·B)

[

f (S)
ij (k) −

h(S)
ij (k)

4πρ

+τ Jijmn(U)

(

f (0)
mn(k)−

h(0)
mn(k)
4πρ

)

]

, (C1)

where the effect of large-scale shear on the tensors f (S)
ij (k) =

〈vi(k) vj(−k)〉 and h(S)
ij (k) = 〈bi(k) bj(−k)〉 is determined

by

f (S)
ij (k) = τ Iijmn(U) f (0)

mn(k), (C2)

h(S)
ij (k) = τ Eijmn(U)h(0)

mn(k), (C3)

and the tensors Iijmn(U), Eijmn(U) and Jijmn(U) are
given by

Iijmn(U) =

{

2kiqδmpδjn + 2kjqδimδpn − δimδjqδnp

−δiqδjnδmp + 4kpqδimδjn + δimδjnkq
∂

∂kp

−
iλr

2k2

[

(

kiδjnδpm − kjδimδpn
)(

2krq − δrq
)

+kq
(

δipδjnδrm − δimδjpδrn
)

− 2kpq
(

kiδjnδrm

−kjδimδrn
)

]}

∇pUq , (C4)

Eijmn(U) =

[

δimδjqδpn + δiqδjnδpm

+δimδjnkq
∂

∂kp

]

∇pUq , (C5)

Jijmn(U) =

{

2kiqδjnδpm − δiqδjnδpm + δimδjqδpl

+2kpqδimδjn + δimδjnkq
∂

∂kp
−

i λr

2k2

[

kiδjnδpm

×
(

2krq − δrq
)

+ δjnδrm
(

kq δip − 2ki kpq
)

]}

∇pUq .

(C6)

Using Eqs. (A9)–(B15) and Eqs. (C1)–(C6), and integrating
in k space, we determine various contributions (8) to the
turbulent flux of the small-scale magnetic helicity caused by
the differential rotation, see Appendix D.

APPENDIX D: GENERAL FORM OF

TURBULENT TRANSPORT COEFFICIENTS

Applying the method described in Appendixes A–C, we have
determined various contributions to the turbulent flux of the
small-scale magnetic helicity. In particular, the general form
of turbulent flux of the small-scale magnetic helicity is given
by

F (m)
i = V (H)

i Hm −D(H)
ij ∇jHm +N (α)

i αK

+M (α)
ij ∇jαK + F (S0)

i , (D1)

where the turbulent transport coefficients are given below.
The turbulent pumping velocity V (H) of the small-scale
magnetic helicity is

V (H) = −
1
15

τ0 V
2
A

{

λ+ 7β(β · λ) +
1
7
τ0

[

28 (W × λ)

+
139
2

(β · λ) (W × β)− 2Q(λ) + β
(

17W · (β × λ)

+58λ ·Q(β)
)

− 31Q(β) (β · λ)− 3λ(β ·Q(β))

−7 (β × λ) (β ·W )

]}

. (D2)
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12 N. Kleeorin and I. Rogachevskii

Here β = B/B is the unit vector along the mean magnetic
field, V A = B/(4πρ )1/2 is the mean Alfvén speed, W =
∇×U is the mean vorticity, the vectors Q(β) and Q(λ) are
defined as Q(β)

i = βm (∂U)mi and Q(λ)
i = λm (∂U)mi, and

the gradient of the mean velocity ∇iU j is decomposed into
symmetric, (∂U)ij = (∇iU j +∇jU i)/2, and antisymmetric,
εijp W p/2 parts, i.e., ∇iU j = (∂U)ij + εijp W p/2.

The total diffusion tensor D(H)
ij that describes the mi-

croscopic and turbulent magnetic diffusion of the small-scale
magnetic helicity, reads:

D(H)
ij = D(H)

T δij +
1
30

τ0 V
2
A

{

5δij − 4βi βj + τ0

[

8εijp

×(W · β) βp + 8βi (β ×W )j + 14 βj (β ×W )i

+4 εiqm εjpn βm βn (∂U)pq +
1
7

(

8(q + 1) (∂U)ij

+2(41 + 34q) βi Q
(β)
j + 2(1− 6q) βj Q

(β)
i + (1 + 8q)δij

×(β ·Q(β))

)]}

+
τ0
2

[

η
T
+

8
15

τ0 V
2
A

]

εijp W p. (D3)

In derivation of Eqs. (D2)–(D3), we take into account that
Hc = Hm/'20, and we neglect small terms ∼ O['20/L

2
m] with

Lm being characteristic scale of spatial variations of Hm.
The turbulent magnetic helicity flux also includes the source
termN (α) αK caused by the kinetic α effect withN (α) being

N (α) = −
1
10

'20 B
2
{

λ+
7q − 2

q
(β · λ)β +

(q − 1) τ0
(3q − 1)

×

[

10 (β ×W ) (β · λ)− 37(W · β) (β × λ)− 4Q(λ)

−4 (β ×Q(β,λ)) +
2
7

(

19β [(β ×W ) · λ]− 4Q(β)

×(β · λ)− 24β (λ ·Q(β)) + 4λ (β ·Q(β))

)]}

, (D4)

where Q(β,λ)
i = (β × λ)m (∂U)mi. The contribution to the

turbulent magnetic helicity flux,∝ − '20 B
2
λαK [see the first

term in equation (D4)], caused by the kinetic α effect, has
been suggested by Kleeorin et al. (2000, 2002, 2003a).

The turbulent magnetic helicity flux contains also the
source term M (α)

ij ∇jαK caused by the gradient ∇jαK of the

kinetic α effect with M (α)
ij being

M (α)
ij =

1
20q

'20 B
2
{

(2q − 1) δij + (20q − 23) βi βj

+
16 q (q − 1)τ0

3q − 1

[

βi (β ×W )j + (W · β) εijp βp

]}

.

(D5)

The additional contribution F (S0) to the turbulent magnetic
helicity flux caused by the large-scale shear (differential ro-
tation) is given by

F (S0) = −
q − 1

3(q + 1)
'2b
〈

b2
〉

W +
2
45

'20 B
2
[

11εW

+(3ε− 10) (β ·W )β + (β ×Q(β))[8q + 35

+ε(8q − 20)]
]

. (D6)

Here ε = '2b
〈

b2
〉

/('20 4πρ
〈

u2
〉

), and 'b is the energy con-
taining scale of magnetic fluctuations with a zero mean mag-
netic field. The contribution to the turbulent magnetic he-

licity flux, ∝ '20 B
2
(β × Q(β)) [see the last term in equa-

tion (D6)], caused by the large-scale shear, has been derived
by Brandenburg & Subramanian (2005a), using a general
expression originally suggested by Vishniac & Cho (2001).

To derive equations for the turbulent magnetic helicity
flux due to the differential rotation in spherical coordinates,
we use the identities given below. The large-scale shear ve-
locity U = δΩ×r is caused by the differential (non-uniform)
rotation, that is in spherical coordinates (r,ϑ,ϕ) reads

δΩ = δΩ(r,ϑ) (cosϑ,− sinϑ, 0), (D7)

and the stress tensor (∂U)ij reads

(∂U)ij =
rn
2

(εimn∇j + εjmn∇i) δΩm. (D8)

The vectors Q(β) and Q(λ) defined as Q(β)
i = βm (∂U)mi

and Q(λ)
i = λm (∂U)mi, are given by

Q(β) = (r × β)m (∇δΩm)− r × (β ·∇)δΩ, (D9)

Q(λ) = −r × (λ ·∇)δΩ, (D10)

where λ = λ er and β = B/B = (βr,βϑ,βϕ). We also use
the identity

εiqm εjpn βm βn (∂U)pq =
1
2
(r · β)

[

(β ×∇)i δΩj

+(β ×∇)j δΩi

]

−
1
2
βm

[

ri (β ×∇)j

+rj (β ×∇)i
]

δΩm. (D11)

We have taken into account that
(

β ×Q(β)
)

r
= O(∇δΩ),

i.e it does not contain contributions ∝ δΩ, but it includes
their spatial derivatives, ∇δΩ. Using Eqs. (D1)–(D11), we
determine various contributions to the turbulent flux of the
small-scale magnetic helicity in spherical coordinates, see
Eqs. (11)–(18).

APPENDIX E: TURBULENT TRANSPORT

COEFFICIENTS IN THE CARTESIAN

COORDINATES

For better understanding of the physics related to vari-
ous contributions to the turbulent flux of the small-scale
magnetic helicity [see Eqs. (D1)–(D11)], we consider a
small-scale turbulence with large-scale linear velocity shear
U = (0, Sx, 0) in the Cartesian coordinates. In this case,
the large-scale vorticity is W = (0, 0, S), the stress ten-
sor (∂U)ij = (S/2) (exi e

y
j + exj e

y
i ), the vector λ that

describes the non-uniform mean fluid density, is λ =
λ (sinϑ, 0, cos ϑ), the unit vector along the large-scale mag-

netic is β = (cos β̃, sin β̃, 0), the vector Q(β)
i = βm (∂U)mi =

(S/2) (sin β̃, cos β̃, 0) and the vector Q(λ)
i = λm (∂U)mi =

(λS/2) sinϑ eyi . We also take into account that

β × λ = λ (cos ϑ sin β̃,− cosϑ cos β̃,− sinϑ sin β̃),(E1)

(β ×Q(β))i = (S/2) cos(2β̃) ezi , (E2)

(β ×Q(λ))i = (S λ/2) sinϑ cos β̃ ezi , (E3)
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β ×W = S (sin β̃,− cos β̃, 0), (E4)

(W × λ)i = S λ sin ϑ eyi . (E5)

First, we determine various contributions to the turbu-
lent flux of the magnetic helicity inside the turbulent region
where the toroidal mean magnetic field is much larger than
the poloidal mean magnetic field, i.e., β = (0, 1, 0). In this
case, the turbulent pumping velocity V (H) of the small-scale
magnetic helicity is

V (H) = −
1
15

τ0 V
2
A λ

[(

1 +
3
14

S τ0

)

eλ + 5.6S τ0 e
y

]

,

(E6)

where eλ = λ/λ. The turbulent magnetic helicity flux has
the source term N (α) αK caused by the kinetic α effect with
N (α) being

N (α) = −
1
10

'20 B
2
λ

[

1−
4(q − 1)
7(3q − 1)

S τ0

]

. (E7)

The total diffusion tensor D(H)
ij which describes the micro-

scopic and turbulent magnetic diffusion of the small-scale
magnetic helicity is given by:

D(H)
ij = D1 δij −D2e

y
i e

y
j +D3e

x
i e

y
j −D4e

y
i e

x
j , (E8)

where D2 = (2/15) τ0 V
2
A,

D1 = D(H)
T +

1
3
η +

1
6
τ0 V

2
A

[

1−
1 + 8q
70

S τ0

]

, (E9)

D3 =
1
2
S τ0

[

η
T
+

159− 6q
105

τ0 V
2
A

]

, (E10)

D4 =
1
2
S τ0

[

η
T
−

34q + 45
105

τ0 V
2
A

]

. (E11)

Equation (E8) implies thatD(H)
xx = D(H)

zz = D1,D
(H)
yy = D1−

D2, D
(H)
xy = D3, D

(H)
yx = −D4, and other components of the

total diffusion tensor D(H)
ij vanish. The turbulent magnetic

helicity flux containing the source term M (α)
ij ∇jαK with

M (α)
ij being

M (α)
ij =

1
20q

'20 B
2
[

(2q − 1) δij + (20q − 23) eyi e
y
j

+
16 q (q − 1)

3q − 1
S τ0 e

y
i e

x
j

]

. (E12)

The additional contribution F (S0) to the turbulent magnetic
helicity flux caused by the large-scale shear is given by

F (S0) = −

[

q − 1
3(q + 1)

−
22
45

V
2
A

〈u2〉

]

'2b
〈

b2
〉

S ez. (E13)

Now we determine various contributions to the turbu-
lent flux of the magnetic helicity at the surface (the up-
per boundary of the turbulent region), where the toroidal
mean magnetic field is much smaller than the poloidal mean
magnetic field, i.e., β = (1, 0, 0). In this case, the turbulent

pumping velocity V (H) of the small-scale magnetic helicity
is

V (H) = −
1
15

τ0 V
2
A λ

[

eλ + 7 sinϑ

(

ex +
81
49

S τ0 e
y

)]

.

(E14)

The turbulent magnetic helicity flux has the source term
N (α) αK caused by the kinetic α effect with N (α) being

N (α) = −
1
10

'20 B
2
λ

[

eλ +
7q − 2

q
sinϑex

−
2(q − 1)
3q − 1

S τ0

(

ez +
44
7

sinϑey

)]

. (E15)

The total diffusion tensor D(H)
ij which describes the micro-

scopic and turbulent magnetic diffusion of the small-scale
magnetic helicity is given by:

D(H)
ij = D1 δij −D2e

x
i e

x
j +D3e

x
i e

y
j −D4e

y
i e

x
j , (E16)

where D2 = (2/15) τ0 V
2
A,

D1 = D(H)
T +

1
3
η +

1
6
τ0 V

2
A, (E17)

D3 =
1
2
S τ0

[

η
T
+

49 + 42q
105

τ0 V
2
A

]

, (E18)

D4 =
1
2
S τ0

[

η
T
+

145 − 2q
105

τ0 V
2
A

]

. (E19)

Equation (E16) implies that D(H)
yy = D(H)

zz = D1, D
(H)
xx =

D1−D2, D
(H)
xy = D3, D

(H)
yx = −D4, and other components of

the total diffusion tensor D(H)
ij vanish. The turbulent mag-

netic helicity flux containing the source term M (α)
ij ∇jαK

with M (α)
ij being

M (α)
ij =

1
20q

'20 B
2
[

(2q − 1) δij + (20q − 23) exi e
x
j

−
16 q (q − 1)

3q − 1
S τ0 e

x
i e

y
j

]

. (E20)

The additional contribution F (S0) to the turbulent magnetic
helicity flux caused by the large-scale shear is given by

F (S0) =
1
3

[

8q + 35
15

'20 B
2
− '2b

〈

b2
〉

(

q − 1
q + 1

−
2 (4q + 1)

15
V

2
A

〈u2〉

)]

S ez. (E21)
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